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NEAREST NEIGHBOR CLASSIFICATION OF STATIONARY TIME SERIES:

AN APPLICATION TO ANESTHESIA LEVEL

CLASSIFICATION BY EEG ANALYSIS

By

Will Cersch

1. INTRODUCTION.

This paper presents the theory and a prototypic example of an explora-

tory population screening-stationary time series classification problem.

In the population screening problem a new individual is classified by

comparing measurements obtained from him with measurements obtained from

other individuals in the alternative categorical states. Human electro- 4

encephalogram (EEG) time series were obtained during surgery simultaneously

with an anesthesiologist's appraisal of the level of anesthesia from a

moderate but not large number of individuals. These EEG time series are

considered to be a set of labeled sample time series. The categorical

time series classes are characterized by broad intersubject time series

variations. An implicit conjecture in this data gathering experiment is

that there is sufficient information in the EEC time series to reliably

classify the level of anesthesia of humans in surgery. Our objectives

are to assess the separability of the time series populations, i.e.

to obtain a statistically reliable estimate of the minimum achievable

probability of misclassification of new time series and to implement a

time series classification rule that can achieve those statistical

properties.



A nearest neighbor time series classification rule achieves those

objectives. With that rule a measure of dissimilarity is computed

between a new to-be-classified time series and each of a set of categori-

cally labeled time series. The new time series is classified with the

label of its least dissimilar neighbor. In our approach the dissimilarity

measure between time series is an estimate of the Kullback Leibler number

between the time series as if the time series were normally distributed.

This dissimilarity measure is shown to have sufficient metric properties

for the formal Cover and Hart 1967 asymptotic nearest neighbor and Rogers

1977 finite sample nearest neighbor classification rule properties to hold.

Those properties allow the conjecture, that there is sufficient information

in the EEG time series to reliably classify the level of anesthesia of

humans in surgery, to be tested with only a moderate number of labeled

sample EEG time series.

The nearest neighbor Kullback Leibler type dissimilarity measure

classification rule (NN-KL) method is applied to the classification of

the level of anesthesia of humans in surgery by the analysis of multi-

channel EEGs. Application of the method exploits time domain formulas

for the Kullback Leibler number between multivariate stationary Gaussian

time series.

Section 2 describes the nearest neighbor time series classification

rule with !hullback Leibler type dissimilarity measure. An implementation

and interpretation of the nearest neighbor Kullback Leibler classification

rule for the classification of stationary time series is in Section 3.

Also in that section, a careful distinction is made between our own use
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of nearest neighbor Kullback Leibler type dissimilarity classification

rules and similarly designated feature analysis-discriminant analysis

classification procedures that are common in speech processing. The

anesthesia level classification by EEG time series population screening

problem example is in Section 4. An appendix shows both the metric

properties of the Kullback Leibler type dissimilarity measure and time

and frequency domain Kullback Leibler number formulas for multivariate

stationary Gaussian time series. Relatively nontechnical discussions

of the problem discussed in this paper appear in Gersch et al 1979

and Gersch et al 1980.
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2. NEAREST NEIGHBOR RULE CLASSIFICATION WITH A KULLBACK LIEBLER TYPE

DISSIMILARITY MEASURE.

Let the labeled sample time series be

( (1)] x.. (N)~ (2.1)

x (m) =(x (m) (1),...,x (") (T)), x (m ) (t) (x (m) (m)

e(in) {l,...,M)

In equation (2.1) x((m ) denotes a d variable - T duration time series,

the I denotes the matrix t..anspose and e(m) denotes the label or

category of the m-th time series. There are M alternative categories.

Designate a new to-be-classified time series

x (°) . (X (0) (1),...,x (o) ()) .(2.2)

The nearest neighbor classification rule is: Let d(x(°),x(in) be a

measure of dissimilarity between the new time series x(0) and the

labeled time series x(m), for m = 1,...,N.

If: d(x(0), (m ') ) < d(x(o),X (m ) ) m- 1,...,N
(2.3)

Then: e(o) . 0(W )

That is, the new series x(° ) is given the label of its nearest

dissimilarity measure time series.
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The dissimilarity measure between time series that we employ for

classification is an estimate of the Kullback Leibler number or I-diver-

gence between time series, computed as if the time series were Gaussian

distributed. Let X and X be two d-vector random variabes witho m

probability density functions f and f respectively. Then, the

I-divergence between f and f is, Kullback, 19680 m

f (x)
l~of) = ffo(x) log - dx . (2.4)

In particular, let X 1 o XP ,Zo) and X nu ,E ). That is let

0 0 m Pm Ta i e

X and X each be normally distributed with d-component zero-meanm

vectors and dx d covariance matrices Z ,Em  respectively. In that

case, from Kullback 1968

2 l(fopf m  log E-+ trEm-i0 - d (2.5)
707

In equation (2.5) and subsequently, the notation IAI, tr(A),A -

denotes respectively the determinant, trace, inverse of the matrix

A.

Consider the d variate-T duration labeled sample time series x(m)

m - I,...,N and the new time series x(o). Let zip J - o or m be

the sample or estimated covariance matrices respectively of x (j ) with

Ej IN yr,c]; and y rc the r-c row-column element of Z . Then,

let

( 0( ) ' (m)) T- J [ m i

d(xX~o,~) - d [in -_-X + t r EmE0- d(2.6)
IEml
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denote a measure of the dissimilarity computed between the sample time

(o) (in) (0) (M)series x and x m
. That is, the dissimilarity measure d(x ,x )

in equation (2.6) is computed from the sample time series to mimic equation

(2.5), as if the time series were Gaussian distributed.

Comments: (1) The I-divergence or Kullback Leibler information number

(also the information for discrimination, information gain or entropy of

f relative to f ) has a basic role in the information theoretic approach
0 m

to statistics, and in statistical physics as maximization of entropy

Kullback, 1968, Good, 1963, Jaynes, 1957. The I-divergence does not

satisfy the triangle inequality and is not a metric. Certain analogies

do exist between the properties of probability density functions and

Euclidean geometry, wherein I-diverge.nce plays the role of squared

Euclidean distance, Csiszgr, 1975.

(2) In Appendix 1 it is shown that the dissimilarity measure in

equation (2.6) has sufficient metric properties for the formal nearest

neighbor statistical classification properties to hold. Those properties

are that the asymptotic probability of misclassification is bounded between

the Bayes risk and twice the Bayes risk, Cover and Hart 1967, and the

0(/N) finite labeled sample cross-validation-leave out one-at-a-time

classification of the labeled sample data set to estimate the probability

of misclassification, Cover 1969 and Rogers 1977.

(3) The cross validation estimate of the probablity of misclassi-

fication permits the implicit conjecture in the exploratory population

screening problem investigation, that there is sufficient evidence in the

measurement data to achieve statistically satisfactory discrimination, to

be tested with only a moderate number of labeled samples.

6



(4) Another classification problem of interest is the "normalized

baseline" time series classification problem. That problem situation is

dominated by intrasubject categorical time series variability. An appli-

cation of nearest neighbor Kullback Leibler type dissimilarity measures

to the classification of faults in relating machinery in a normalized

baseline classifiation problem context is in Gersch et al 1980b.
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I
3. IMPLEMENTATION AND INTERPRETATION OF THE NEAREST NEIGHBOR TIME

SERIES CLASSIFICATION RULE.

The formula for the dissimilarity between the T-duration d-variable

sample time series x (o) and x(m) in equation (2.6) indicates operations

on matrices of size Tdx Td. Almost invariably direct computations on such

sized matrices is forbidding. Alternatively, explicit time and frequency

domain formula for the specific situation of the Kullback Leibler number

between multivariate stationary ergodic Gaussian distributed time series

are of interest. Such formulas are developed in Appendix 2. Mimicing

those formulas yields practical implementable dissimilarity measure

computations that only involve operations on dx d matrices. A tried

and recommended procedure for computing those dissimilarity measures

involves the parametric autoregressive (AR) modelling of the x(°) and

x (m) time series.

For example, consider the d-variate time series x for j = 0

or m and let

T
Tt=l

1T-k - )

r'(J(k) = [ (x (t+k)-x)(x (t)-x) ' , k=0,1,... (3.1)
t=l

denote the sample mean and sample covariance of the j-th time series.

Then, the autoregressive model of order p fitted to x(j )

satisfies,

p ~ j _ 
(J (j) Q

I A Mx (t-i) e eJ)(t) A(o) - di=O

(3.2)

E[e ()t)] = O, E[e((t+k)e((t) ' ] = Vj k,0
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In equation (3.2) x (t) and e (t) are d-vectors and A((i)

are dxd matrices. The AR model in equation (3.1) may be fitted

to the labeled sample time series x (m), m = 1,...,N and the new time

series x(° ) by employing the Whittle-Robinson recursive model computa-

tion - Akaike AIC criterion model order selection procedure, Whittle

1963, Akaike 1974. The fitting of multivariate AR models to data and

illustrative examples are shown in Akaike 1976 and Gersch and Yonemoto

1977.

Then, a computationally convenient dissimilarity measure between

the time series x (o) and x (m) is

d() (m) IV m Pm o m ,

2d( ,x ) = n ,- + tr( [ [ A m )(i)r ((j-i)A (j)V )-d
VI i=0 j=0

(3.3)

Equation (3.3) only involves operations on dX d matrices. It mimics the

second time domain formula in Appendix 2 for the computation of Kullback

Leibler numbers between the probability density functions of Gaussian

distributed zero-mean stationary time series. The finite duration multi-

variate time series x (0) and x(m) are modeled by finite order auto-

regressive models. In equation (3.3), the hatted quantities are

estimates of the corresponding theoretical quantities, pm is the order

of the AR modeled time series xCm) and r(o)C.) is the sample covariance

(o)matrix function of the new time series x

Figure 1 shows a schematic implementation of the computation of the

dissimilarity measure between the new time series x (0) and the labeled

9
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sample time series for m =1 *AR models of the x ()and the

labeled --.,pie x (in), s are assumed. Application of the new time series

x (0 t) to the m-th AR model yields the residual time series

Co,M) (o) (m)e (t), t =l,...,T. The dissimilarity measure, d(x ,x can

also be expressed in terms of a formula involving the residual time series

e (,)(t) and e (om) (t), Gersch 1977. The term residual is the quantity

remaining or not explained after a particular model is fitted to the data.

If one of the labeled sample AR time series models is precisely the AR

model that corresponds to the generation of the x (0(t) data, the corres-

ponding residual sequence will be a white noise sequence. In that sense,

the nearest neighbor rule selects the "closest to whiteness" residual

sequence.

More concisely, the AR models of the labeled time series sample can

be interpreted as templates of those time series. In effect, in the

nearest neighbor classification procedure, the new time series is compared

against the templates of the labeled sample time series. The most similar

template is the one for which the dissimilarity measure is smallest.
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Figure 1. A schematic implementation of a time series data

nearest neighbor rule classification procedure.

11



4. AN ANESTHESIA LEVEL CLASSIFICATION BY EEG ANALYSIS POPULATION

SCREENING PROBLEM.

An exploratory EEG time series data-population screening classifica-

tion problem is treated by the nearest neighbor rule approach. The

category or state of an individual is classified by comparison of his

or her EEG with EEGs taken from other individuals. The automatic classi-

fication of anesthesia levels Ll and L3, respectively the anesthesia

levels insufficient for and sufficient for deep surgery by machine computa-

tions on the EEG alone is considered. Extension of the nearest neighbor

rule approach to distinguish between more than two categories or anesthesia

levels does not involve any new concepts.

The anesthesia level EEG data originated in an experiment at Vancouver

General Hospital. 280 epochs of visually screened, relatively artifact

free, stationary halothane-nitrous oxide anesthesia level labeled EEGs

were collected from twenty different individuals in surgery. The non-EEG

criteria determined anesthesia levels were classified by a single anesthe-

siologist to eliminate the problem of inter-EEG-rater variability. Details

of the experimental surgical anesthesia situation and a review of the

status of automatic classification of anesthesia levels using EEG data

appear elsewhere, McEwen, 1975a,b and Gersch et al 1980a. The data con-

sisted of 64 second recordings of four channel EEG epoch data, (F4-C4,

F3-C3, C4-02, and C3-01 in the 10-20 EEG system), analogue-FM recorded

through a 0.54 to 30 Hz. bandpass filter and subsequently digitially tran-

scribed at the rate of 128 samples/second. An examination of the avail-

able data suggested that we confine our attention to a two category clas-

sification problem, to classify the anesthesia levels Ll and L3 respectively,
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the anesthesia levels that are insufficient and just sufficient for

deep surgery. The data selected for analysis was the 73 EEG epochs

comprised of all the 35-LI EEC epochs available and 38-L3 EEC data

epochs (in sets of 2-3 epochs per individual) from a total of 18 different

individuals. The analysis was performed on the first twenty second inter-

vals of each EEC data epoch at a reduced data rate of 128/3 samples per

second on d = 4 EEC data channel and d = 2 EEC data channel (C4-02 and

C3-01) data. This constitutes the labeled sample data base.

The implicit conjecture in the EEC population screening problem is

that there is sufficient information in the EEC alone to achieve clinic-

ally acceptable levels of discrimination between categorical EEC states.

The credibility of this conjecture is strained by evidence of the broad

intersubject categorical EEC variability. Figure 2, 2-channel twenty

second anesthesia level Ll and L3 EEC epochs from five different subjects

suggests that the EEC of an individual does differ in the Ll and L3 anes-

thesia level states and also illustrates broad intersubject EEG variabi-

lity. The Ll EE~s appear to be relatively homogeneous "fast" EE~s whereas

the L3 EE~s include fast, slow, regular and irregular EE~s. No obvious

visual properties of the EE~s distinguish the Ll and L3 EE~s from each

other.

A useful statement of the conjecture in the EEC population screening

problem is: Civen labeled EEC samples from two categorical populations,

estimate the theoretically best achievable statistical classification per-

formance. The use of the KL number type metric in NN rule classification,

in a delete-one subj ect 's EE-at-a-time KL-NN and KL-kNN classification of

the labeled EEC sample base, yields that estimate. (See Duda and Hart 1973

for kWN rules).

13



VGH - HA (F 4, LI, S40) 0-20 SECS. VGH - HA (F 2, L3, S40) 0-20 SECS.

44,.., 4t,

VGH - HA (F 22, L, S42) 0-20 SECS. VGH - HA (F 26, L3, S42) 0-20 SECS.

VGH - HA (F 97, U, S52) 0-20 SECS. VGI - HA (FIO13, S52) 0-20 SECS.

VGH -HA (144, U, S71) 0-20 SECS, VGH HA (F145, L, S71) 0-20 SECS.

VGH - HA (F184, i, S73) 0-20 SECS, VGH - HA (F 4, 1, S47) 0-20 SECS,

Figure 2. Two channel EEG time series from five different individuals

in each of the anesthesia level states Li and L3.
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To achieve a baseline appraisal of the achievable discriminability

between the LI and L3 anesthesia level EEG sample populations, the EEG

epochs of a single individual at a time were deleted from the 18 individual

- 73 epoch labeled sample EEG data. Each of the deleted-individual's EEG

epochs was classified against the remaining 17 individual labeled EEG

sample population using KL-NN and KL-kNN rules. The results obtained are

shown in Table 1. The entries in the table indicate the number of classi-

fication errors and the percentage of correct classification for the best

d - 2 EEC channel and d - 4 EEG channel KL-NN classification performance.

The best classification results for the d - 2 and d - 4 EEG data channels

was 85% and 89% overall correct classification respectively.

TABLE 1: DELETE ONE-SUBJECT-AT-A-TIME, KL-NN RULES RESULTS

KL-3NNN; d = 2 KL-NN; d - 4

Errors, % rrors, %
Correct Lo L3 orrect Ll L3

abeled Labeled

EGs EEGs

LI 1 Ll 1
35 epochs 97% 1 35 epochs 97%

i 7L3 -- 0 L3 82%

38 epochs 74% 38 epochs

The objectives of this exploratory population screening anesthesia

level classificacion by EEG analysis study have been very clearly met.

with only a moderate sized label sample data base, the results obtained

quite reliably suggest that the population screening anesthesia level

classification by EEG analysis scenario has substantial possibilities for

clinical applications.
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Comments: I) Additional considerations for the implementation of

nearest neighbor rules in automatic EEG classification such as the conse-

quences of alternative EEG normalizations on classification performance

and nearest neighbor data thinnings analysis considerations to economize

on computational and storage burdens are examined in Gersch et al 19 80 a.

Briefly, any comparison of EEG time series is subject to arbitrary con-

ventions, criteria and normalizations. The alternative normalizations of

the EEG that are possible in nearest neighbor rule classification are

explicit in equation (3.3), the dissimiiarity measure formula between

stationary time series EEGs. The alternative normali..ations influence

the relative dominance of the first and second terms in that equation.

The related subject of distortion measures for speech processing is

treated by Gray et al 1980.

2) Time series classification by nearest neighbor rules with

Kullback Leibler type dissimilarity measures for classification are very

well known in dpeuch procesring, Itakura and Saito, 1970, and Gray et

al 1980. In those applications KL number dissimiiarity measures

most commonly involve the modelling of each of the labeled sample and

new (scalar) time series by fixed order autoregressive models.

Those AR model parameters or features are transformed into the Kullback

Leibler number measures. Because the order of the AR models fitt-d to

each time series is fixed, that classification procedure is potentially

of the feature analysis-discriminant analysis variety. The poignant

remark by Cover 1973, that the problem for which that solution is optimum

is not known is applicable here. "Chus the usual speech processing adaption

of NN-KL type metric classification has no necessary statistical

16
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nor nearly optimal statistical classifiation properties. An example

of the misclassification of time series that results from arbitrarily

fixing the order of AR model fitted to the time series is in

Brotherton and Gersch, 1980.
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APPENDI CES

1. THE METRIC PROPERTIES OF d(x(° ),x

Here we show that the Kullback Leibler type dissimilarity measure

between time series has sufficient metric properties that the formal

nearest neighbor rule statistical classification properties apply to

nearest neighbor classification rules that employ that measure. Following

the development of Cover and Hart 1973, it is only necessary to show that

i) d(x(),x() - 0 , ii) d(x(,x m ) > 0 for any x() x() and

iii) the minimum value of the dissimilarity measure d(x (),x (m ))  0,

as N the number of labeled samples increases indefinitely. Property

i) is immediate from equation (2.6). Property ii) is proved below

separately. To prove property iii); Let the sample Tdx Td covariance

matrix E be distributed in accordance with distribution F. Let
0

A A A

Eo,T' EI,T' Z2,T''.. be lID random variables from that distribution.

Then the space RTdx Td on which the sample covariances are defined is

a separable metric space and the minimum Euclidean distance between the

sample covariances goes to zero. That is, l'io -m i - 0. Then, since

(o) (m ) o A A AA
d(x x ) d(E0 , ,) is a continuous function of Em, and X -E

in R Td, d(Z ,) 0, Royden, 1968. Property Wi); Consider the
o,T' m , T

A AA

situation with Z - and Z - E + A. The matrix A denotes a small
0 o n 0

perturbation matrix. For convenience subscript T and hat notation will

be dropped in what follows. Then

(o) (mn) I 0 I-
2Td(x ,x ) 2Td(Eo, 0o+A) - (9.n [ r+ l + tr(F (E +0)-l)-Td]

18



We would like to prove that d(ZoE o+A) > 0. Eo is symmetric, positive

definite and fixed, E +A symmetric and positive definite and A is
0

"small". Let A =-1/2 A Z-/2. Then A is symmetric, and I+A is0 0

positive definite. Then, the last equation can be written

f(A) - tnII+Al + tr(I+A)-l Td

The problem is now reduced to demonstrating that f(A) is convex in

the neighborhood of A+0. Let A - A(s) be linear in s. Then by the

-1 -1 -1 - 1
rules, dtnIXI - tr(X )(dX) and dX - -(x-)(dX)(X ), Anderson,

1958,

df(A) tr(i+A) -1 dA- t(I+A) -1 dA -1

ds d Ass)

where ( s) is a symmetric matrix. Since A(s) is linear, d2A(s) 0,dsds 2

so

2__ fA1 dA -1idA
f(A) . tr(I+A) (s)(I+A)-)

ds 2  d

-dA -I dA -lI

+ 2 tr(I+A)-I (A-)(I+A) (A-)(I+A)- I

-ldA [2IA-1 I dA -1

- tr(I+A)-  ( ) (1+A) - I] (-)(I+A)

= tr B[2(1+A)- I - I]B'

19
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In the equation above we have let B - (I+A) -1 dA The right-handds Tergthn

side of that equation will be non-negative provided the term in brackets

in the last row is positive semidefinite. But that is equivalent to

21- (I+A), and the (I-A) being positive semidefinite. That implies

A < I in the sense of positive definiteness and also -I < A since

I+A > 0. Then, clearly when A = 0, d2 f(A(s)) > 0 and in general

ds
2

f(A) is convex provided -I < A < I.

A2. TIME AND FREQUENCY DOMAIN KULLBACK LEIBLER FORMULAS BETWEEN

STATIONARY GAUSSIAN TIME SERIES.

TIME SERIES REPRESENTATIONS. Let {x() (t) and {x (it)} denote

d-variabe zero-mean stationary ergodic Gaussian time series with corres-

ponding probability density function fo), f(m) and d xd matrix

covariance functions r(o)(k), r(m)(k) and power spectral density

matrices S (f) and Sm(f) respectively. Identify the time series

x ( C) (t) parametrically in terms of the Wold (moving average) and auto-

regressive representations, Whittle, 1963.

x Ci)(t) = hCt) W ()t) i = 0,1,2,...,M

A (t) x (i ) (t) C ( t);

E((t)) = 0; E(C(()(t+k)c(it) ) = V 1k,0 (Al)

In equation (AI), the symbol * denotes the convolution operation, E

is the expectation operator and {h(i)(t)} and {A(i)(t)} are respectively

20



the dx d impulse matrix response and AR matrix coefficients. Denote

(m) Cc)the action of the AR operator defined by x (t) on x (t) by

(m) (o) (o,M)
A (t)) e(t)-e (t) . (A2)

In equation (A2), e(oCm)(t) has an interpretation as a zero-mean

"residual" time series in the conventional sense of a regression analysis.

Its zero-log covariance maLfix is

E(e (m) (t)e ('m)(t)') =- V A3)m

Employing the notation of equation (A2) in equation (Al)

A(m)(t ) * h(o) (t) * C(o)(t) = e(0,m) ( t)

h(0,m) (t) * (0)(t) = e(0,m) (t) . (A4)

In equation (A4), h(0,m)(t) designates the impulse response of the

cascade of filters A (m)(t) and h(0)(t). By elementary linear operations,

h (0m)(t) = h(°)(t) + A(m)(i)h(°)(t-i), t = Co),... (A5)
i=l

KULLBACK LEIBLER NUMBER FORMULAS. Then, time and frequency domain

formulas for the ullback Leibler numbers between those Gaussian time

series are:

21



2 1 (f(O)f(m)) = m + tr( h('m) (t)V h(° 'm) (t)V)- d

t=O m

n m + tr( A [ (m)(Mr(0)(j-i)A ( m) (j)V )-d
i=O j=O

S (f)S m(f)- I df)-d . (A6)

An intermediate result, derived from equation (2.6) and the time

series notation above, from which the results in equation (A6) follow

is that

21 (f(0),f(m)) = Zn Vml + -1 - d . (A7)
0

Then, the first two parametric time domain formulas for the Kullback

Leibler number between stationary Gaussian time series in equation (A6)

may be derived from equation (A7) by replacing Vm  by its definition,

equation (As) and then substituting for e(om) by its representations

in equations (A4) and (A2) and taking the indicated expectations. The

frequency domain formula, the third line in equation (A6) is obtained

from equation (A7) by the use of Parseual's theorem and the assumption

of ergodicity.

Comments: The first development of a frequency domain formula for the

Kullback Leibler number between Gaussian distributed time series was

probably due to Pinsker, 1964, that work appears to have remained almost

unknown to Western researchers. Subsequently frequency domain formulas

were developed by Shumway and Unger, 1974, Hawkes and Moore, 1976 and

22



B.D.O. Anderson et al 1978. The first time domain formula for the

Kullback Leibler number between scalar time series is probably due to

Itakura and Saito 1968, in their search for distance measures in speech

classification. A complete and up-to-date treatment of that approach

is in Gray et al 1980. Akaike, 1976 shows different development of the

second time domain formula in equation (A6). That development has

attracted little attention.

Will Gersch
Dept. of Information &
Computer Science
University of Hawaii
Honolulu, Hawaii 96822
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